
RADemics 

 
  

Variational 
Quantum 
Eigensolver 
Applications in 
Quantum Machine 
Learning 

M. Amshavalli, Shambhu Sharan Srivastava 
 ERODE SENGUNTHAR ENGINEERING COLLEGE, SCHOOL OF 
MANAGEMENT SCIENCES 



Variational Quantum Eigensolver Applications 

in Quantum Machine Learning 

M. Amshavalli, Assistant Professor, Department of Computer Science and Engineering, Erode 

Sengunthar Engineering College, Erode, Taminadu, India, amshavalli1494@gmail.com 

Shambhu Sharan Srivastava, Associate Professor, School of Management Sciences, Varanasi, 

shambhuss@yahoo.com 

Abstract 

The Variational Quantum Eigensolver (VQE) has emerged as a transformative approach in 

quantum computing, providing a practical means to tackle complex quantum systems. This chapter 

delves into the essential components and strategies for enhancing VQE performance, focusing on 

key areas such as hybrid optimization techniques, quantum circuit design, and measurement 

efficiency. By integrating classical and quantum resources, hybrid optimization methods 

significantly improve convergence rates while reducing the computational burden on quantum 

devices. The chapter explores the design of quantum circuits, emphasizing the importance of 

selecting appropriate variational ansätze to achieve optimal results. Challenges related to 

Hamiltonian simulation and measurement are critically examined, alongside innovative solutions 

to mitigate noise and enhance measurement fidelity. Through these comprehensive insights, this 

chapter aims to illuminate the potential of VQE in advancing quantum machine learning 

applications across diverse scientific domains. 
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Introduction 

The Variational Quantum Eigensolver (VQE) has emerged as a pivotal algorithm in the realm 

of quantum computing, particularly for addressing the complexities inherent in quantum chemistry 

and many-body physics [1,2]. As a hybrid algorithm, VQE leverages both quantum and classical 

computing resources to efficiently estimate the ground state energies of quantum systems [3]. This 

methodology capitalizes on the strengths of current noisy intermediate-scale quantum (NISQ) 

devices, which are characterized by their limited qubit count and error rates [4,5]. By combining 

variational techniques with quantum measurements, VQE provides a promising avenue for 

exploring the quantum landscape, ultimately aiming to unlock new insights into chemical 

reactions, materials properties, and more[6,7,8,9]. 

One of the core strengths of VQE lies in its adaptability to various quantum systems [10]. The 

algorithm can be tailored to accommodate a wide range of Hamiltonians, allowing researchers to 

investigate diverse physical phenomena [11,12]. For instance, the ability to incorporate different 

ansätze, or parameterized quantum circuits, enhances the flexibility of VQE, enabling it to 
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represent complex quantum states more accurately [13]. This adaptability was crucial in the quest 

for reliable quantum simulations, as it allows researchers to fine-tune their approaches based on 

the specific characteristics of the system under study [14]. Consequently, VQE stands out as a 

versatile tool for both theoretical investigations and practical applications in quantum chemistry 

and beyond [15]. 

The convergence of VQE was significantly influenced by the optimization strategies employed 

throughout the process. Classical optimization methods play a vital role in refining the parameters 

of the variational ansatz, guiding the algorithm toward an optimal solution [16,17]. Various 

techniques, such as gradient-based optimization and derivative-free methods, have been explored 

to enhance convergence rates [18]. Additionally, the choice of initial parameters can substantially 

impact the efficiency of the optimization process [19,20,21]. By intelligently selecting starting 

points based on prior knowledge or computational heuristics, researchers can improve the 

likelihood of reaching the global minimum and thus achieve more accurate results [22]. 

Measurement efficiency was another critical aspect that influences the overall performance of 

VQE. The quantum nature of the VQE process necessitates multiple measurements to extract 

meaningful expectation values from the quantum states generated by the algorithm. The inherent 

noise and errors present in quantum devices complicate this task, potentially leading to inaccurate 

results [23]. Therefore, advanced techniques for error mitigation and measurement optimization 

are essential for maximizing the reliability of VQE outcomes [24]. Implementing strategies such 

as measurement error correction, variance reduction, and adaptive sampling can help improve 

measurement fidelity and enhance the algorithm's overall efficiency [25]. 

 


